ffnn#
- class sparx.ffnn.FFNN(shape: tuple, weights: ndarray, bias: ndarray, activation_functions: list[str])#
Bases:
object
feedforward neural network
- add_layer(neuron_count: int, weights: ndarray, bias: ndarray, activation_function: str) None #
Extends the network with a new layer
- Parameters:
neuron_count (int) – number of neurons in layer
weights (np.ndarray) – weight matrix between previous layer in keras format
bias (np.ndarray) – bias matrix for new layer in keras format
activation_function (str) – activation function to use in keras format
- forward_pass(inputs: ndarray) ndarray #
Performs a forward pass through the network and return the activated output for each layer
- Parameters:
inputs (np.ndarray) – The inputs to the network
- Returns:
output labels
- Return type:
np.ndarray
- get_shape() tuple[int] #
Returns the shape of the network
- Returns:
tuple with sizes of each layer
- Return type:
tuple[int]