user_input#
- sparx.user_input.get_ffnn_model(x_data, y_data, hidden_layers_size=[4])#
Legacy code for BASIC MODEL for the FF-NN
- sparx.user_input.get_ffnn_model_general(x_data: DataFrame, y_data: DataFrame, activation_funcs: list[str], hidden_layers_size: list[int], output_activaiton: Optional[str] = 'sigmoid') Model #
BASIC MODEL for the FF-NN
- sparx.user_input.import_dataset(filepath: str, features: Optional[list[str]] = None, has_index: bool = True) tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame] #
Import dataset from file path to pandas dataframe.
- sparx.user_input.import_model(framework: Framework, model: any) Model #
Approach 1: User inputs a pre-trained model
- sparx.user_input.load_preset_dataset(dataset: str) tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame] #
Load and plot
- sparx.user_input.net_train(model, x_train, y_train_onehot, x_validate, y_validate_onehot, epochs=1000)#
Train the model
- sparx.user_input.precision_m(y_true, y_pred)#
Precision function.
- sparx.user_input.recall_m(y_true, y_pred)#
Recall function.
- sparx.user_input.train_model(dataset: str, activation_functions: list[str], hidden_layers_size: list[int], epochs: int = 10) Model #
Train model.
- sparx.user_input.verify_keras_model_is_fnn(model: Model) bool #
Verify that the model is a feed-forward neural network.